Oligomerization of hepatitis delta antigen is required for both the trans-activating and trans-dominant inhibitory activities of the delta antigen.
نویسندگان
چکیده
Two forms of hepatitis delta antigen (HDAg) have different roles in the replication cycle of hepatitis delta virus (HDV); the small forms trans activates HDV RNA replication, whereas the large form suppresses it but is needed for virion assembly. To understand the mechanism of these regulatory activities, we studied the possible HDAg oligomerization and its role in HDV replication. In this report, we provide direct biochemical evidence for the in vitro and in vivo formation of homodimers and heterodimers between these two HDAg species. By deletion mutagenesis, we showed that this protein interaction is mediated by the leucine zipper-like sequence residing in the N-terminal one-third of HDAg. Furthermore, site-specific mutants with various substitutions on two of the leucine residues in this stretch of sequence had reduced or no ability to form HDAg dimers. Correspondingly, the small HDAg with mutations in the leucine zipper-like sequence had reduced abilities to trans activate HDV RNA replication. Similar mutations on the leucine zipper-like sequence of the large HDAg also resulted in loss of the ability of large HDAg to inhibit HDV RNA replication. The in vivo biological activities of both forms of HDAg (trans activation and trans-dominant inhibition of HDV RNA replication, respectively) correlated with the extent of HDAg oligomerization in vitro. Thus, we conclude that the small HDAg participates in HDV RNA replication as an oligomer form and that the large HDAg inhibits HDV RNA replication as a result of its complex formation with small HDAg. A "black sheep" model for the mechanism of trans-dominant inhibition by the large HDAg is presented.
منابع مشابه
Isoprenylation masks a conformational epitope and enhances trans-dominant inhibitory function of the large hepatitis delta antigen.
Hepatitis delta antigen (HDAg) consists of two species, large (LHDAg) and small (SHDAg), which are identical in sequence except that the large form contains 19 extra amino acids at the C terminus. The large form is prenylated on the Cxxx motif. The small form can trans activate HDV RNA replication, while the large form inhibits it. To determine the molecular basis for their differential functio...
متن کاملLarge hepatitis delta antigen in packaging and replication inhibition: role of the carboxyl-terminal 19 amino acids and amino-terminal sequences.
Hepatitis delta virus (HDV) encodes two proteins, the small delta antigen (SHDAg) and large delta antigen (LHDAg). The latter is identical to the former except for the presence of additional 19 amino acids at the C terminus. While SHDAg is required for HDV replication, LHDAg inhibits replication and, together with hepatitis B surface antigen (HBsAg), is required for the assembly of HDV. The las...
متن کاملConstruction and Eukaryotic Expression of Recombinant Large Hepatitis Delta Antigen
Background: Hepatitis delta virus (HDV) is a subviral human pathogen that exploits host RNA editing activity to produce two essential forms of the sole viral protein, hepatitis delta antigen (HDAg). Editing at the amber/W site of HDV antigenomic RNA leads to the production of the large form (L-HDAg), which is required for RNA packaging. Methods: In this study, PCR-based site-directed mutagen...
متن کاملIncreased RNA editing and inhibition of hepatitis delta virus replication by high-level expression of ADAR1 and ADAR2.
Hepatitis delta virus (HDV) is a subviral human pathogen that uses specific RNA editing activity of the host to produce two essential forms of the sole viral protein, hepatitis delta antigen (HDAg). Editing at the amber/W site of HDV antigenomic RNA leads to the production of the longer form (HDAg-L), which is required for RNA packaging but which is a potent trans-dominant inhibitor of HDV RNA ...
متن کاملDetection and Genotyping of Hepatitis D Virus from HBsAg Positive Patients in Iran Using RT-PCR
Hepatitis Delta virus (HDV) is a degenerate RNA virus or virusoid and a satellite of Hepatitis B virus (HBV). Three distinct genotypes are described for HDV; genotype I is distributed worldwide but other genotypes appear to be more restricted geographically. In the present study, an RT-nested PCR method was set up to detect delta infection from serum samples. Moreover, the target amplified sequ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 66 11 شماره
صفحات -
تاریخ انتشار 1992